Ram pressure stripping of disk galaxies From high to low density environments
نویسندگان
چکیده
Galaxies in clusters and groups moving through the intracluster or intragroup medium (abbreviated ICM for both) are expected to lose at least a part of their interstellar medium (ISM) by the ram pressure they experience. We perform high resolution 2D hydrodynamical simulations of face-on ram pressure stripping (RPS) of disk galaxies to compile a comprehensive parameter study varying galaxy properties (mass, vertical structure of the gas disk) and covering a large range of ICM conditions, reaching from high density environments like in cluster centres to low density environments typical for cluster outskirts or groups. We find that the ICM-ISM interaction proceeds in three phases: firstly the instantaneous stripping phase, secondly the dynamic intermediate phase, thirdly the quasi-stable continuous viscous stripping phase. In the first phase (time scale 20 to 200Myr) the outer part of the gas disk is displaced but only partially unbound. In the second phase (10 times as long as the first phase) a part of the displaced gas falls back (about 10% of the initial gas mass) despite the constant ICM wind, but most displaced gas is now unbound. In the third phase the galaxy continues to lose gas at a rate of about 1M⊙ yr −1 by turbulent viscous stripping. We find that the stripping efficiency depends slightly on the Mach number of the flow, however, the main parameter is the ram pressure. The stripping efficiency does not depend on the vertical structure and thickness of the gas disk. We discuss uncertainties in the classic estimate of the stripping radius of Gunn & Gott (1972), which compares the ram pressure to the gravitational restoring force. In addition, we adapt the estimate used by Mori & Burkert (2000) for spherical galaxies, namely the comparison of the central pressure with ram pressure. We find that the latter estimate predicts the radius and mass of the gas disk remaining at the end of the second phase very well, and better than the Gunn & Gott (1972) criterion. From our simulations we conclude that gas disks of galaxies in high density environments are heavily truncated or even completely stripped, but also the gas disks of galaxies in low density environments are disturbed by the flow and back-falling material, so that they should also be pre-processed.
منابع مشابه
Ram pressure stripping of halo gas in disk galaxies: Implications on galactic star formation in different environments
We numerically investigate evolution of gaseous halos around disk galaxies in different environments ranging from small groups to rich clusters in order to understand galaxy evolution in these environments. Our simulations self-consistently incorporate effects of ram pressure of intergalactic medium (IGM) on disk and halo gas of galaxies and hydrodynamical interaction between disk and halo gas ...
متن کاملEffects of Ram-Pressure from Intracluster Medium on the Star Formation Rate of Disk Galaxies in Clusters of Galaxies
Using a simple model of molecular cloud evolution, we have quantitatively estimated the change of star formation rate (SFR) of a disk galaxy falling radially into the potential well of a cluster of galaxies. The SFR is affected by the ram-pressure from the intracluster medium (ICM). As the galaxy approaches the cluster center, the SFR increases to twice the initial value, at most, in a cluster ...
متن کاملRam Pressure Stripping in Clusters and Groups
Ram pressure stripping is an important process in the evolution of both dwarf galaxies and large spirals. Large spirals are severely stripped in rich clusters and may be mildly stripped in groups. Dwarf galaxies can be severely stripped in both clusters and groups. A model is developed that describes the stripping of a satellite galaxy’s outer H i disk and hot galactic halo. The model can be ap...
متن کاملEnvironmental Effects on Evolution of Cluster Galaxies in a Λcdm Universe
We investigate environmental effects on evolution of cluster galaxies under hierarchical structure formation scenario using combination of a dissipationless N-body simulation and a semi-analytic model of galaxy formation. The N-body simulation enables us to calculate orbits of galaxies in simulated clusters. Therefore we can include stripping of cold gas from the galactic disks by ram pressure ...
متن کاملThe Evolution of Galaxies in and around Clusters at High-Redshift
In this paper, we focus on ram-pressure stripping and evaporation of disk galaxies in and around a cluster. We show that the evolution of the disk surface density affects the efficiency of ram-pressure stripping of galaxies at z ∼ 1. We also consider the saturation of thermal conduction in detail and show that it cannot be ignored at larger radii of a cluster, which makes the time-scale of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004